
AIBridge
Lectures 1

Lecture Outline

2

● Google Colab

● General Python Syntax

● Variables

● Logic

● Control Flows

● I/O

● List manipulation

● OOP

● https://colab.research.google.com/

● Stores everything on Google Drive (no setup)

● Can be shared with others

● Run code within “cells”

● Code execution from top to bottom

Follow along as we work through the Python language

Google Colab

3

https://colab.research.google.com/

Lecture Outline

● Google Colab

● Getting Started

● Variables

● Logic

● Control Flows

● I/O

● List manipulation

● OOP

4

● Comments allow sections of the code to be more readable
○ Anything after a “#” is a comment
○ # I am a comment!

● Indents are required, serving the function of curly brackets (use tab key)

Getting Started

5

Lecture Outline

6

● Google Colab

● General Python Syntax

● Variables

● Logic

● Control Flows

● I/O

● List manipulation

● OOP

● A variable is a reserved place in memory given to a value

● Creating variables: variable_name = value

● Can be used anywhere after its assignment, but never before

● Can re-assign values as needed

● 7 types: Integer, Floating-point, String, Boolean, List, Tuple, and Dictionary

Variables - Overview

7

● Cannot start with a number ("3rd_variable" will not work)

● Cannot include spaces ("my variable" will not work)

● Case sensitive ("my_variable" is different from "mY_vArIaBle")

● Should be descriptive

● * Cannot be a keyword: https://www.w3schools.com/python/python_ref_keywords.asp

● * Good practice: all lowercase with underscores for spacing

Good: number_of_datapoints, petal_widths, ...

Invalid: number of cases, 1status, ...

Variables - Names

8

https://www.w3schools.com/python/python_ref_keywords.asp

Self-Test
What does the following code output?

variable_a = 25

varaible_b = 70

variable_a = 40

variable_b = variable_a

print(variable_b)

A. 70 ⇒ because the value of variable_b is set
to be 70 in the second line

B. 40 ⇒ because the value of variable_b is set
to be the same as variable_a which is 40

C. 25 ⇒ because the value of variable_b is set
to be the same as variable_a which is 25

9

Self-Test
What does the following code output?

variable_a = 25

varaible_b = 70

variable_a = 40

variable_b = variable_a

print(variable_b)

A. 70 ⇒ because the value of variable_b is set
to be 70 in the second line

B. 40 ⇒ because the value of variable_b is set
to be the same as variable_a which is 40

C. 25 ⇒ because the value of variable_b is set
to be the same as variable_a which is 25

10

● Whole number

● + or -

my_first_number = 1

my_second_number = 5

my_third_number = -3

Variables - Integer

11

● Can be a decimal

● Accurate within 2-55

pi = 3.14159265358

petal_length = -3.5

Variables - Floating-Point

12

Variables - String

13

● A string of characters

● Put in quotations " " or ' '
○ Cannot mismatch these quotations

● * Block string (multi-line string): three quotation marks

● * Special character (new line): '\n'

my_first_string = 's'

my_second_string = "string 2"

my_second_string = 'another string'

Not this:

● True or False (capitalize in Python)

● 1 or 0

my_first_boolean = True

my_second_boolean = False

Variables - Boolean

14

Variables - List

15

● A list of values

○ my_list = [object_1, object_2, ...]

○ Can include multiple different data types

○ my_second_list = ["hello world", True, 5]

● For a specific value in the list: my_list[index]

○ The index of the 1st item is 0,

○ a_value = my_second_list[2] # gets the THIRD value in the list

○ * The index for the last number -1 if using negative index

[a, b, c, d, e]
 0 1 2 3 4
 -5 -4 -3 -2 -1

Self-Test
What does the following code output?

my_list = [21, 22, 23, 24, 25]

value = my_list[2]

print(value)

A. 22 ⇒ because value is set to the
second item in the list

B. 23 ⇒ because value is set to the
third item in the list

16

Self-Test
What does the following code output?

my_list = [21, 22, 23, 24, 25]

value = my_list[2]

print(value)

A. 22 ⇒ because value is set to the
second item in the list

B. 23 ⇒ because value is set to the
third item in the list

17

● Works the same as a list, but can’t be changed

● Can contain multiple different data types

my_first_tuple = (object_1, object_2, ...)

my_second_tuple = (22, "hello!", True, 3.1415)

a_value = my_second_tuple[2] # gets the THIRD value in the tuple

* Variables - Tuple

18

● A list of values with custom keys that are indices, like a list but indices are keys and not positions

my_dictionary={'apple':'fruit', 'banana':'fruit', 'cabbage':'vegetable',

'dragonfruit':'fruit','eggplant':'vegetable'}

print(my_dictionary['cabbage'])

* Variables - Dictionary

19

● Types are named: int, float, str, bool, list, tuple
● Convert types of variables to other types

my_float = float(my_object) #gives object in float form if possible

● Compatible types:
○ int-float (float to int rounds down)
○ str → int/float
○ * list-tuple
○ * boolean-int/float (0 -> False, anything else -> True)
○ * str-list/tuple (only converts str to list/tuple of single characters)

Variable Type Conversion

20

Lecture Outline

21

● Google Colab

● General Python Syntax

● Variables

● Logic

● Control Flows

● I/O

● List manipulation

● OOP

Logic - Basic Arithmetic Operations

y = x + 1

+ - * ** / // %

Addition Subtraction Multiplication Exponentiation
Division

(turns int to
float)

Floor Division
(rounds down
the quotient)

Modulus
(returns the
remainder)

x + y
1 + 2 = 3

x - y
2 – 1 = 1

x * y
2 * 3 = 6

x ** y
2 ** 3 = 8

x / y
8 / 2 = 4.0

x // y
9 // 4 = 2

x % y
10 % 4 = 2

22

if statement_1:

 Code segment 1

elif statement_2: # elif means else if

 Code segment 2

else:

 Code segment 3

Logic - if, elif, and else

23

x = 3

y = 4

if x == y:

 print('x is equal to y')

elif x > y:

 print('x is greater than y')

else:

 print('x is less than y')

Logic example code

24

== != < > <= >=
== Gives True if the two sides are exactly the same (1 == 1, True)
!= gives True if the two sides are NOT the same (2 != 1, True)

print(3 == 3) # True
print(3 == 4) # False

print(3 < 3) # False

Logic Operations - ==, !=, <, >, <=, >=

25

● not - negates expression not 9 + 10 == 21 is True

● and - combines expressions, only true if both are 1==1 and 1==2 is False

● or - if at least one of them are true 1==1 or 1==2 is True

x = 1

y = 1

if x < y or x == y:

 print("x is less than or equal to y")

Logic Operations - not, and, or

26

Self-Test

Which of these
conditions are
successfully passed?

petal_width = 1.8

petal_length = 3.5

if petal_width < 3 or petal_length < 3:

 print("condition 1 passed")

if petal_width < 3 and petal_length < 3:

 print("condition 2 passed")

if petal_width < 3:

 if petal_length < 3:

 print("condition 3 passed")

27

petal_width = 1.8

petal_length = 3.5

if petal_width < 3 or petal_length < 3:

 print("condition 1 passed")

if petal_width < 3 and petal_length < 3:

 print("condition 2 passed")

if petal_width < 3:

 if petal_length < 3:

 print("condition 3 passed")

Self-Test

Which of these
conditions are
successfully passed?

28

Lecture Outline

29

● Google Colab

● General Python Syntax

● Variables

● Logic

● Control Flows

● I/O

● List manipulation

● OOP

Control flows

● Very important

● Two types: for and while

30

We have this very large list of 11 words:

words = ["Lorem", "ipsum", "dolor", "sit", "amet", "fusce",
"rhoncus", "mi", "viverra", "velit", "mattis"]

How do we access and print out every word?

Control flows - Hypothetical Scenario

31

word_list = ["Lorem", "ipsum", "dolor", "sit", "amet", "fusce", "rhoncus", "mi", "viverra", "velit", "mattis"]

print(word_list[0])

print(word_list[1])

print(word_list[2])

print(word_list[3])

print(word_list[4])

print(word_list[5])

print(word_list[6])

print(word_list[7])

print(word_list[8])

print(word_list[9])

print(word_list[10])

Control flows - Hypothetical Scenario

32

Horribly inefficient

A lot of tedious manual coding

Completely unscalable (what if there were 70 words)

● How to use: for object in iterable:
○ String, list, range, etc.

○ Need indentation

for number in range(0, 11): #range goes through 0, 1, 2, … 10

 #this loop repeats 11 times and number changes to each number

 print(word_list[number])

Control flows - For

33

Control flows - For

34

word_list = ["Lorem", "ipsum", "dolor", "sit", "amet", "fusce", "rhoncus", "mi", "viverra", "velit", "mattis"]

for number in range(0, 11): #range goes through 0, 1, 2, …, 10

 #this loop repeats 11 times and number changes to each number

 print(word_list[number])

for word in word_list:

 #this loop does the exact same thing but with less typing

 print(word)

Self-Test

Which of the following code blocks will print out everything in the list?

a.

for word in big_list:

 print(word)

b.

for i in range(9):

 print(big_list[i])

big_list = ["Lorem", "Ipsum", "Dolor", "Sit", "Amet",

"Consectetur", "Adipiscing", "Elit", "Sed"]

c.

for word in big_list:

 print(big_list[word])

35

Self-Test

Which of the following code blocks will print out everything in the list?

a.

for word in big_list:

 print(word)

b.

for i in range(9):

 print(big_list[i])

big_list = ["Lorem", "Ipsum", "Dolor", "Sit", "Amet",

"Consectetur", "Adipiscing", "Elit", "Sed"]

c.

for word in big_list:

 print(big_list[word])

36

a_list = [3, 22, 1, 73, 40, 3, 19]

sum = 0

for i in range(0, 7):

 sum = sum + a_list[i]

 sum /= 2.4

 sum *= -1

 print(a_list[i])

print(sum)

Control flows - Indentation

37

Inside loop

because of

indentation

● How to use: while statement:

○ The loop repeats as statement is true

○ Needs indentation

my_number = 0

while my_number < 6:

 print(my_number)

 my_number = my_number + 1

Control flows - While

38

Lecture Outline

39

● Google Colab

● Getting Started

● Variables

● Logic

● Control Flows

● I/O

● List manipulation

● Functions and Modules

● Input from console: input('prompt')

I/O
Standard Input

● Open file: file_object=open(file, mode)
○ 'r' is read and 'w' is write for the mode

○ read()

"""Here is a file.

This file has multiple lines.

This is the last line."""

, readline(), readlines()

"Here is a file."

"This file has multiple lines."

"This is the last line."

["Here is a file.",

"This file has multiple lines.",

"This is the last line."]

● Always close file: file_object.close()

40

● Open file: file_object=open(file, mode)
● write()
● Always close file

Note: This removes any existing file with that name

● Output to Console: print(object1, object2, ...)

I/O
Standard Output

print('a', 'b', 'c', 'd')

print('e', 'f', 'g')

41

Lecture Outline

● Google Colab

● Getting Started

● Variables

● Logic

● Control Flows

● I/O

● List Manipulation

● Functions and Modules

42

● Indexing

● List operations

● String/list interop

● Multidimensional lists

43

List Manipulation

● Single indexing

[a, b, c, d, e]
 0 1 2 3 4
 -5 -4 -3 -2 -1

List Manipulation
Indexing

list_name[]i

● List slicing

031

list_name[:]

list_name[-2]

i j1 4

44

A. [5, 6, 7, 101, 102, 103, 104, 105]

B. [6, 7, 101, 102, 103, 104, 105]

C. [6, 101, 102, 103, 104]

D. [6, 101, 102, 103]

Self-Test
What does the following code output?

arr = [4, 5, 6, 101, 102, 103, 104, 105]

new_arr = arr[2:6]

print(new_arr)

45

A. [5, 6, 7, 101, 102, 103, 104, 105]

B. [6, 7, 101, 102, 103, 104, 105]

C. [6, 101, 102, 103, 104]

D. [6, 101, 102, 103]

Self-Test
What does the following code output?

arr = [4, 5, 6, 101, 102, 103, 104, 105]

new_arr = arr[2:6]

print(new_arr)

46

● https://docs.python.org/3/tutorial/datastructures.html

● my_list.append(object) #adds object to the end of my_list

● my_list.remove(object) #removes the first occurence of object

● my_list.insert(i, object) #adds object to index i in my_list

● my_list.pop(i) #removes the object at index i

● list_1 + list_2 #adds list_2 to the end of list_1

● my_list.count(object) #gives you the number of times object occurs

● my_list.sort() #sorts list in ascending order

● len(my_list) #gives you the length of my_list

● min(my_list), max(my_list) #gives smallest and largest value in my_list

List Manipulation - List operations

47

https://docs.python.org/3/tutorial/datastructures.html

● Lists can contain other lists

my_list=[[1,2,3], [4,5,6], [7,8,9]] #list nested twice, so 2 dimensional list

print(my_list[0])

print(my_list[0][0]) #here, my_list[0] is a list, so we can index it

print(my_list[-2][0:3])

my_list_2=[[[[1,2],[3,4]],[[5,6],[7,8]]],[[[9,10],[11,12]],[[13,14],[15,16]]]]

#list nested four times, so 4 dimensional list

print(my_list_2[0][1][-2][0])

print(my_list_2[1][-1][1][0])

* Multidimensional lists

48

● Strings also have indexing (same as if it’s a list of all single chars)

''.join(my_list) #joins all objects (must be strings) in my_list

print('a string'[0])

print('a string'[1])

print('a string'[-1])

my_string.split(substring) #at each point where substring occurs, splits

my_string, returns list

print('this is a string'.split(' '))

List Manipulation - String/List Interop

49

Lecture Outline

● Google Colab

● Getting Started

● Variables

● Logic

● Control Flows

● I/O

● List manipulation

● Functions and Modules

50

Functions

● What is a function?

○ Reusable block of code with optional inputs and outputs

○ Like a factory

● print(___) is a function

● Built-in functions

● Imported functions

● Custom functions

51

Functions - Create Functions

def function_name(param_1, param_2, ...):

 ...

 return(value)

function_name(p1,p2,e...)

52

Functions - Create Functions

def factorial(input_int):

 total = 1

 for n in range(input_int):

 total = total * (n + 1)

 return(total)

 print('factorial computed')

print(factorial(5))
53

Functions - Built-in Functions

● Python already has these functions

● Full list at https://docs.python.org/3/library/functions.html

● For example: print, len, range, etc.

54

https://docs.python.org/3/library/functions.html

● Import third-party modules containing functions, etc.

import module_name

from module_name import function_name

This imports a module as a nickname (alias)

import sklearn as skl

Modules

55

