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FOOD SYSTEMS

_dn_ AlBridge
AlBridge Lecture 4



Our first question:
what /s Artificial Intelligence?



Generally...

e An Al is a fancy function that maps inputs

to outputs.

: 1al
Input — —> output

More generally, given a thing, Al
can tell you a thing.



Al Models

e \We call different types of Al functions models.

iInput — — output



Al Models

e \What are the inputs and outputs?

® Rn to Rm functions

INput
1
2 [ ] -
3
n



Al Model Examples

INput output
1

¢ o] e
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Al Model Examples

INput output
1

0 4— “No”

e ]
44— “Yes”
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Al Model Examples

INput output

cat

dog
rabbit!
tiger

chicken



Al Model Examples

|n%ut
“one-hot” categorical data!

not cat =——pp» /
O 2

1
rabbit! ——p» 3

output
1

not tiger =——=p»

not chicken =P m



iInput output

B by changing the shapes of input and output,
models can represent a lot of different problems
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* Labeled data
* Direct feedback
» Predict outcome/ffuture

Supervised

Learning

Unsupervised Reinforcement
* No labels * Decision process
* No feedback * Reward system

* “Find hidden structure” * Learn series of actions



SUPERVISED LEARNING



Supervised Learning

m “Supervised learning (SL) is the machine learning task of learning a
function that maps an input to an output based on example input-output
pairs. It infers a function from labeled training data consisting of a set

of training examples.” — Wikipedia

m |nput-output pairs: Features and labels
m Training/learning and inference

m Most widely used ML techniques in real-world applications.
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Terminology alignment

Sample = (features, label)

Features: independent variables, attributes, predictors, input variables, input,
covariates, explanatory variables, treatment variables,

Label: dependent variable, outcome, target variable, outcome variable,
response variable

Samples: cases, observations, individuals, participants, data points

If you have other names for these, please let me know.



Supervised Learning

features

Q1 —



What types are there?



Classification

m Predicting a label/class/category

> EX: spam or not, cancer or not, cat or dog, red
wine vs. white wine

Classification
Will it be Cold or Hot tomorrow?

PREDICTION
Fahrenheit
OF oA <0 J0 2 10 0 10 & S0 40 o ! 60 N ) 90 W0 110 120 120 140 150 180 10 180 190 A0 20 A0 20
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What does classification do?

data — — category
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Regression

m Predicting a (continuous) quantity
> EX: Survival rate, wine quality, yield prediction

Regression
What is the temperature going to

PREDICTION
34°
Fahrenheit
OF S0 40 30 2 10 0 10 2 J0 40 50 60 N B0 90 1000 110 120 130 140 150 1180 10 180 150 20 210 220 Z20
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What does regression do?

data — — Cont. value
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Examples

= You're running a company, and you want to
develop learning algorithms to address each of
two problems.

> Problem 1: You have a large inventory of identical
items. You want to predict how many of these items
will sell over the next 3 months.

> Problem 2: You’d like software to examine individual
customer accounts, and for each account decide 1f 1t
has been hacked/compromised.

s Are they classification or regression?
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Supervised Algorithms Practice

= You’re running a company, and you want to
develop learning algorithms to address each
of two problems.

> Problem 1: You have a large inventory of identical
items. You want to predict how many of these
items will sell over the next 3 months.

x Can we formulate it as a classification
problem?

22



Supervised Algorithms Practice

= You’re running a company, and you want to
develop learning algorithms to address each
of two problems.

> Problem 1: You have a large inventory of identical
items. You want to predict how many of these
items will sell over the next 3 months.

x Can we formulate it as a classification
problem?

We could. Sometimes, we can reformulate.
Let’s start with regression instead!
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Speech Recognition
9 b =




Face Recognition

e ——————————— - .




Sentiment Analysis
Sentiment Analysis

» © @

My experience The productis |
s o i o ok | guess Your supportteamis
fantastic! useless

POSITIVE NEGATIVE




Spam Filter




Fraud Detection




Recommendation

APPLICATION
Smartphone
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Stock Price Prediction
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Food Quality/Safety Prediction
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“All models are wrong, some are useful”
- George Box



Our dataset: wine quality




What does our dataset look like?

UG

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Wine Quality

Data Set

Download-: Data Folder, Data Set Description

_ |search

O Repository @ Web G ooale™

Abstract: Two datasets are included, related to red and white vinho verde wine samples, from the north of
Portugal. The goal is to model wine quality based on physicochemical tests (see [Cortez et al., 2009], [Web

Link]).

View ALL Data Sets

Data Set Characteristics:

Multivariate

| Number of Instances:

Attribute Characteristics:

Real

Associated Tasks:

Classification, Regression

Missing Values?

4898 | Area:

Business

L | Number of Attributes: | 12 ¥ate Donated

2009-10-07

N/A | Number of Web Hits:

1891084

Source:

Paulo Cortez, University of Minho, Guimaraes, Portugal, http://www3.dsi.uminho.pt/pcortez
A. Cerdeira, F. Almeida, T. Matos and J. Reis, Viticulture Commission of the Vinho Verde Region(CVRVV), Porto, Portugal

@2009

Wow! 12 attributes!

(and quality, which can be counted as a 13th)
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Structuring our dataset

® Fixed acidity

® \/olatile acidity -
® Citric acid

® Residual sugar

® Chlorides

® Free sulfur dioxide
® Total sulfur dioxide
® Density

® pH

® Sulphates

® Alcohol

® White/Red

a feature of input data

B a sample is a collection of the feature set and
its label
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So if we want to predict wine quality...

® Fixed acidity

® \/olatile acidity

® Citric acid

® Residual sugar

® Chlorides

® Free sulfur dioxide
® Total sulfur dioxide
® Density

® pH

® Sulphates

® Alcohol

® \White/Red

Quality (0-10)
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..we’ll need a model!

® Fixed acidity

® \/olatile acidity

® Citric acid

® Residual sugar

® Chlorides

® Free sulfur dioxide
® Total sulfur dioxide
® Density

® pH

® Sulphates

® Alcohol

® \White/Red
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Linear Regression



Linear Regression

e What does linear regression represent?

The features

Fixed acidity
Volatile acidity
Citric acid
Residual sugar
Chlorides

Free sulfur dioxide
Total sulfur dioxide
Density

pH

Sulphates

Alcohol
White/F

ed

v

VS.

The label
Quality (0-10)
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| et’s start with one variable.



Linear Regression

e \We'll just consider one feature of our sample.

[Acidity:l —> —> [Quality (0-10)]
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Linear Regression

Quality
Output

Acidity
Input
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Linear Regression

Quality

4— Prediction

“slope” (rotation of the line)
J Acidity
y; = mx; + b €— “intercept” (shift of the line)
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Linear Regression

Quality

Acidity
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Linear Regression

Quality

Acidity
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How do we evaluate these

models objectively?



Calculating Error
e error is a measure of the “incorrectness” of a line

Quality

Acidity
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Calculating Error

e simple error: difference between the predicted value

and the actual value

Quality

Acidity
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Calculating Error

e sum-of-squares error: sum of the squared difference

between predicted and actual values

Quality

squared
error

RSS = ), (= 3)’

Acidity
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Calculating Error

e How do we minimize error? Cost function

Sum of all of the Square it!
squared differences l

l
1 (3 NN\ 2
COST = =31, (7 =y W)

T Difference between

Divide by number of predicted and actual
samples: mean

error, not total error
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Training a model

YV =Wg + WXy + Woxo + Waxz + -+ WX, e

y

Build a linear Evaluate the cost
regression model function

(i 1Y 2
?=0 .V(l) _}’(l))



Higher-dimensional linear regression

So what about the
main dataset? And
its 12 features?

\%L
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Higher-dimensional linear regression

Fixed acidity
Volatile acidity

Citric acid

Residual sugar
Chlorides

Free sulfur dioxide
Total sulfur dioxide
Density

pH

Sulphates

Alcohol

White/Red

- = [ouaity 0-10]
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Higher-dimensional linear regression

4~ }f

Data Point

X1

YV =Wg+ wixy +wyXy + wixg + -+ wyxy,

Hyperplanes!

More dimensions, similar
math.
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One key assumption we make

dataset linearity



What if our data
doesn't have a
linear
representation?

%
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The assumption fails...

This model isn’t great... ®

B model is unable to capture relationship between variables
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We need to make our model

more powerful!



Polynomial Regression



Polynomial Regression

e introducing higher-dimensional terms to add curvature

nth degree term

Y

P =woxm+w, x"+w, x™% e+ wyx + wy

!

nth term coefficient
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Polynomial Regression

61



Polynomial Regression

A\

What about this?

62



Polynomial Regression

A\

What about this?
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Polynomial regression - Which one is better?
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Polynomial Regression
A significant difference!

—

0 ! .1




Polynomial Regression

We overfit the dataset...



Calculating Error

N

Y

e [he same cost function!

Sum of all of the Square it!
squared differences l

l
1 (3 NN\ 2
COST = =31, (7 =y W)

T Difference between

Divide by number of predicted and actual
samples: mean

error, not total error

= Wy Xy + WoXZ + WaX3 + o+ WXl 4 o+ wixgx, + o
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Higher-dimensional polynomial regression

e More powerful (and complex) models!

4

T
7T/2
0
-71/2
-7T
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Higher-dimensional polynomial regression

e More powerful (and complex) models!

N

y — W1X1 + szzz -|- ngg -|— -|- an;ll _|_ _|_ Wixlxz _|_
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Higher-dimensional polynomial regression

e Don't worry, the math stays the same:

}}: ann + Wn_lxn_l + Wn_zxn_z + + W1x + WO

Build a
polynomial Evaluate the

regression cost function
model

1 (3 . P
COST ==Yy (P© — y®)

T
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What about
classification?

\%L
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LOGISTIC REGRESSION



Logistic Regression

® Fixed acidity
® \/olatile acidity

® Citric acid

| |
® Residual sugar 0 e a Class

® Chlorides ]

® Free sulfur dioxide
® Total sulfur dioxide
® Density

® pH

® Sulphates

e categorical label outputs are named “classes”™
® Alcohol
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Logistic Regression

White = 0
Red = 1



Why can’t we just use linear or

polynomial regression?



Logistic Regression

Red

White

<4— not super great

Acidity

/6



Logistic Regression

Red

White

0.5

Acidity

(77



Logistic Regression

Red

White

Acidity

4— 2

/8



Logistic Regression

Red

White

<+ -1

Acidity
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Logistic Regression

Red

White

<4— |ogistic functions!

Acidity
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Logistic Regression

A logistic function:

1

N

y IR 1 _I_ e—WO+W1X1+“‘+ann

our input features
are here
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Logistic Regression

Red

White

Acidity
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Logistic Regression

Red

White

Acidity

83



Logistic Regression

Red

White

Acidity
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Logistic Regression

Red

White

00,0 ¢0)0

(0'(® (€O

<4— Probability threshold

Acidity
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Logistic Regression

Red

White

00,0 ¢0)0

A s

(0'(® (€O

AKA the decision
boundary!

Acidity
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Logistic Regression

A new cost function...

1 o | B
COST = — =¥ o (v Plog(¥®) + (1 = y ) log(1 = )



Logistic Regression

A new cost function...

COST = — =37 |y Dlog(PD)|+ (1 - y©) log(1 — y©)



Logistic Regression

A new cost function...

1 . (1 . 7
COST = — 3Ly (yPlog(#) +|(1 = y*) log(1 — pV))



Logistic Regression

A new cost function...

1 _ . y
COST = — = ¥iLg(y Plog(# )]+ (1 — y©¥) log(1 — p®)




Logistic Regression

A new cost function...

1 | p | __
COST = — =31, (y Plog(#™) +|(1 — y¥) log(1 — p™)




Training logistic regression

1

y o 1 _I_ e—W0+W1X1+“'+ann

Build a logistic Evaluate the

cost function

regression
model

1 N | »
COST = — =31, (yPlog( D) + (1 — y V) log(1 — p©)
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But what if we have
more than two classes
for output?

:

93



Multi-class classification

White Red Champagne



One vs. One and One vs. All

Classification



One vs. One Classification
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One vs. One Classification

White
Red



One vs. One Classification

White White
Red Champagne
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One vs. One Classification

White White
Red Champagne

Red
Champagne
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One vs. One Classification

more pairs
voted for white!

» White White Red
Red Champagne Champagne

v

It’s
white!

B One-vs-one multiclass classification uses the most “voted for” class among paired models



Problems with One vs. One Classification

Red

Is that
really red?

Champagne ;

10



One vs. All Classification

White
Not white

Red Champagne
Not red Not champagne

'\ pick the answer with
highest probability



A quick summary...



what /s Artificial Intelligence?

iInput — — output



Supervised Learning

Linear Regression m I
. . . Logistic Regression

Polynomial Regression



Lab time!



